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Introduction
Problem statement

� Malicious software has
become a serious threat to
computer systems.

� In 2018, the number of
new malware increased by
19.1% more than the
samples discovered in
2017∗.

* https://www.av-test.org/en/statistics/malware/
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Introduction
Problem statement

Figure: The number of new discovered malware since Feb. 2017.
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Introduction
Main problem

Malicious users increase the number of malware by using
various techniques to avoid the detection from anti-malware
tools.

Figure: Popular evasive techniques
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Introduction
The idea to reduce the number of signature

� The existence of a huge number of metamorphic and
polymorphic malware collected by semi-automatic
approaches are used to generate a large list of signatures.

� Then, we should reduce the number of signatures.
� Clustering is a way to determine malicious programs which

are structurally similar and to decrease the number of
signatures.

� However, the minimum time required for clustering n
elements is O(n2).
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Solution

� We will leverage Locality-Sensitive Hashing (LSH) to
identify similar elements with time complexity of O(nA)
where A is the number of axes and is less than n.

� We have proposed a new Locality-Sensitive Function
(LSF) and provide a clustering methodology to provide
significate signature for malicious code detection.
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Steps of proposed methodology

� Provide the hash table.
� Cluster instances based upon the hash table.
� Generate signatures for each cluster.
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Proposed methodology

Programs are dissembled and their Opcode sequences are
extracted. Some of Opcode sequences are selected as axes.
All samples are compared with axes to provide the hash table.
Equation 4 defines our proposed hash function.
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Proposed methodology

Rows determine the comparison results with axes. Those
samples that have equal values are members of one cluster.
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Proposed methodology

The suffix tree of Opcode sequences of a cluster are obtained.
Then, the longest common sub-suffix trees are gathered.
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Proposed detection methodology

The instance are disassembled. Then, its Opcode sequence
are extracted. If a longest common Opcode sequence of
clusters is found into the Opcode sequence of the given
program, them the program is member of that cluster.
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Proposed update methodology

If the instance is not detected as member of any cluster, then
its comparison result with the axes would be inserted into the
hash table. Thus, the suffix trees of the related cluster would be
re-generate to extract longest common sub-suffix trees.
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Locality-Sensitive Hashing (LSH)

� The general idea of LSH is the selection of a number of
elements as axes to be compared with other elements.

� LSH has a Locality-Sensitive Function (LSF) which it
defines a similarity hash function.

� Despite the popular hash function which a small change in
elements causes large variations in the amount of created
hash value, LSF should be insensitive to variations of
similar elements.

� Those elements, having equal vectors are considered to
belong to a cluster.
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Locality-Sensitive Hashing (LSH)

Suppose S is a set of elements and d is a distance function.
Therefore,

d : S × S → [0,∞) (1)

A LSH for a similarity d is a probability distribution over a set h
of hash functions such that

P (h(X) = h(Y )) = similarity(X,Y ) (2)

for each X,Y ∈ S.
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Locality-Sensitive Hashing (LSH)

Definition 1. A hash function h : S → H is a
(d1, d2, p1, p2)−sensitive if H is an infinite set and d1 < d2. We
have the following conditions for X,Y ∈ S.

1. If d(X,Y ) ≤ d1, then P (h(X) = h(Y )) ≥ p1

2. If d(X,Y ) ≥ d2, then P (h(X) = h(Y )) ≤ p2
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Hash Function for Sequential Data
Our proposed LSF

Our proposed distance function is presented in Equation 3. X
and Y are two sequences and LCS is the longest common
subsequence of X and Y .

d(X,Y ) = |X|+ |Y | − 2|LCS(X,Y )|. (3)

The characteristics of this distance function are:
a) Always d(X,Y ) ≥ 0.
b) Always we have symmetry, d(X,Y ) = d(Y,X).
c) There is triangle inequality,
d(X,Y ) + d(Y,Z) ≥ d(X,Z), in this function.
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Hash Function for Sequential Data
Our proposed LSF

Equation 4 presents our similarity function.

similarity(X,Y ) =
2 ∗ |LCS(X,Y )|
|X|+ |Y |

(4)
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Malware Clustering Algorithm

� We have leveraged the disassembled code of binary files
to cluster malware.

� The dataset is a sequence of the disassembled instruction
set for each malicious or legitimate program.

� We have used Suffix tree largest common sequence
algorithm, having time complexity of order of O(|X|+ |Y |).
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Evaluation
Implementation

� The proposed algorithm is written in C++.
� The system was a 20 core CPU Intel(R) Xeon(R) E5-2650

v3 @ 2.30GHz, and 48GB memory.
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Evaluation
Dataset

� Malware samples aggregated from Virusshare.
I VirusShare 00146.zip
I VirusShare 00148.zip

� The instances are classified by Kaspersky internet security.
� 1700 legitimate programs, collected from PortableApps and popular and

newly installed windows default applications

Name The number of instance
Trojan horses 12152

Rootkits 79738
Backdoors 110231
Spywares 100017

Keyloggers 90172
Total 501684
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Evaluation
Influence of A.

Table: The comparison to proposed method and represented method
in [4]. A is the number of axes and T is similarity percentage. T = 20.

A = 104 A = 2 ∗ 104 A = 3 ∗ 104

Evaluation
Metrics

our
method

prior approach
[4]

our
method

prior approach
[4]

our
method

prior approach
[4]

Accuracy 0.9094 0.8991 0.9172 0.9176 0.9559 0.9359
F-Measure 0.9351 0.9304 0.9366 0.9423 0.9656 0.9580
Precision 0.9559 0.9576 0.9563 0.9776 0.9735 0.979
Recall 0.9152 0.9047 0.9176 0.9095 0.9578 0.9374
#clusters 3564 3754 3863 4023 4387 4543
#signatures 40549 49938 36493 47394 34239 46903
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Evaluation
Influence of T .

Table: Effect of T on the number of signature and clusters.
A = 3 ∗ 104.

T = 10 T = 20 T = 30 T = 40

The number of clusters 4075 4387 4836 4914
The number of signatures 37253 34239 36365 36821
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Evaluation
Influence of the number of instances on Time of clustering.

Figure: Clustering time of Suffix tree clustering algorithm [3] vs
proposed clustering algorithm.
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Future works

� We present a hash function with higher accuracy than
previous methods to cluster malware.

� Unlike the previous works that their features have a
fixed-length, our hash function is based on dynamic-length
features.

� the achieved signature detected the dataset with an
accuracy of 95.59% by saving 30% in the number of
signatures.
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Future works

� Prototyping the proposed approach for deploying in a
real-world online malware detection by reducing the
number of signatures.
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